A new algorithm is proposed to accelerate RANSAC model quality calculations. The method is based on partitioning the joint correspondence space, e.g., 2D-2D point correspondences, into a pair of regular grids. The grid cells are mapped by minimal sample models, estimated within RANSAC, to reject correspondences that are inconsistent with the model parameters early. The proposed technique is general. It works with arbitrary transformations even if a point is mapped to a point set, e.g., as a fundamental matrix maps to epipolar lines. The method is tested on thousands of image pairs from publicly available datasets on fundamental and essential matrix, homography and radially distorted homography estimation. On average, it reduces the RANSAC run-time by 41% with provably no deterioration in the accuracy. It can be straightforwardly plugged into state-of-the-art RANSAC frameworks, e.g. VSAC.
翻译:提议采用新的算法来加速RANSAC 模型质量计算。 方法基于将联合通信空间(例如2D-2D点对等)分割成一对常规网格。 网格单元格用最低样本模型绘制, 在RANSAC内部估计, 以否决早期与模型参数不一致的通信。 拟议的技术是一般性的。 即使将一个点绘制成一个点形, 也可以进行任意的转换, 例如, 作为向上层线的基本矩阵图。 方法用在基本和基本矩阵、 同性恋和对同系法的扭曲估计等公开数据集上数千对图像进行测试。 平均而言, 网格单元格运行时间减少41%, 精度不会下降。 它可以直接插入到最先进的RANSAC 框架, 如 VSAC 。