A humanized dialogue system is expected to generate empathetic replies, which should be sensitive to the users' expressed emotion. The task of empathetic dialogue generation is proposed to address this problem. The essential challenges lie in accurately capturing the nuances of human emotion and considering the potential of user feedback, which are overlooked by the majority of existing work. In response to this problem, we propose a multi-resolution adversarial model -- EmpDG, to generate more empathetic responses. EmpDG exploits both the coarse-grained dialogue-level and fine-grained token-level emotions, the latter of which helps to better capture the nuances of user emotion. In addition, we introduce an interactive adversarial learning framework which exploits the user feedback, to identify whether the generated responses evoke emotion perceptivity in dialogues. Experimental results show that the proposed approach significantly outperforms the state-of-the-art baselines in both content quality and emotion perceptivity.
翻译:人性化对话系统预计将产生同情的回答,这种回答应该对用户表达的情感敏感。 提议了产生同情对话的任务来解决这个问题。 关键的挑战在于准确捕捉人类情感的细微差别,考虑用户反馈的潜力,而大多数现有工作都忽略了这些潜力。 针对这一问题,我们提出了一个多分辨率对抗模式 -- -- EmpDG, 以产生更多的同情反应。 EmpDG 利用粗糙的对话水平和细微的象征性情感,后者有助于更好地捕捉用户情感的细微差别。 此外,我们引入了一个互动对抗性学习框架,利用用户反馈,以确定所产生的反应是否在对话中引起情感感知。实验结果显示,拟议的方法在内容质量和情感感知性两方面大大超越了最先进的基线。