We present open domain response generation with meta-words. A meta-word is a structured record that describes various attributes of a response, and thus allows us to explicitly model the one-to-many relationship within open domain dialogues and perform response generation in an explainable and controllable manner. To incorporate meta-words into generation, we enhance the sequence-to-sequence architecture with a goal tracking memory network that formalizes meta-word expression as a goal and manages the generation process to achieve the goal with a state memory panel and a state controller. Experimental results on two large-scale datasets indicate that our model can significantly outperform several state-of-the-art generation models in terms of response relevance, response diversity, accuracy of one-to-many modeling, accuracy of meta-word expression, and human evaluation.


翻译:元词是一种结构化的记录,它描述了应对措施的各种属性,从而使我们能够在公开的域对话中明确地模拟一对多种关系,并以可解释和可控制的方式进行响应生成。 为了将元字纳入代代,我们用一个目标跟踪记忆网络来强化从顺序到顺序的结构,将元字表达形式正式确定为一个目标,并管理生成过程,通过一个国家记忆小组和一个国家控制器来实现这一目标。 两个大型数据集的实验结果表明,我们的模型在反应相关性、反应多样性、一到多种模型的准确性、元字表达的准确性以及人的评价方面可以大大超过几个最先进的生成模型。

6
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
和积网络综述论文,Sum-product networks: A survey,24页pdf
专知会员服务
24+阅读 · 2020年4月3日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
4+阅读 · 2019年9月26日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年5月10日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员