Typical Bayesian inference requires parameter identification via likelihood parameterization, which has invited criticism for being less flexible than the Frequentist framework and subject to misspecification. Though misspecification may be avoided by functional parameter inference under a nonparametric model space, there does not exist a flexible Bayesian semiparametric model that would allow full control over the marginal prior over any general functional parameter. We present the technique of $\theta$-augmentation which helps us manipulate nonparametric models into semiparametric ones that directly target any functional parameter. The method allows Bayesian probabilistic statements to be drawn for any estimator that is defined as a functional of the empirical distribution without requiring a likelihood function, thus providing a path to Bayesian analysis in problems like causal inference and censoring where there do not exist well-accepted likelihood functions.
翻译:典型的Bayesian推论要求通过概率参数化来确定参数,这引起了批评,因为其灵活性不如Ordenist框架,并且有错误的区分。虽然功能参数推论在非参数模型空间下可以避免错误的区分,但是没有一种灵活的Bayesian半参数模型能够完全控制任何一般功能参数之前的边际。我们提出了美元加价技术,帮助我们将非参数模型转化为直接针对任何功能参数的半参数。该方法允许为任何被界定为经验分布功能的估算师绘制Bayesian概率性陈述,而不需要可能性功能,从而为Bayesian分析诸如因果推断和审查等问题提供了一条路径,如果不存在公认的概率函数,则进行这种分析。