Cell segmentation is a major bottleneck in extracting quantitative single-cell information from microscopy data. The challenge is exasperated in the setting of microstructured environments. While deep learning approaches have proven useful for general cell segmentation tasks, existing segmentation tools for the yeast-microstructure setting rely on traditional machine learning approaches. Here we present convolutional neural networks trained for multiclass segmenting of individual yeast cells and discerning these from cell-similar microstructures. We give an overview of the datasets recorded for training, validating and testing the networks, as well as a typical use-case. We showcase the method's contribution to segmenting yeast in microstructured environments with a typical synthetic biology application in mind. The models achieve robust segmentation results, outperforming the previous state-of-the-art in both accuracy and speed. The combination of fast and accurate segmentation is not only beneficial for a posteriori data processing, it also makes online monitoring of thousands of trapped cells or closed-loop optimal experimental design feasible from an image processing perspective.
翻译:细胞分离是从显微镜数据中提取量化单细胞信息的一个主要瓶颈。 挑战在微观结构环境的设置中显现出来。 虽然深层学习方法已证明对普通细胞分离任务有用, 酵母- 微观结构设置的现有分解工具依赖于传统的机器学习方法。 我们在这里展示了为个体酵母细胞的多级分解和从类似细胞的微结构中辨别这些细胞而培训的进化神经网络。 我们概述了为培训、验证和测试网络而记录的数据集以及典型的使用案例。 我们用典型的合成生物学应用来展示该方法对在微结构环境中分解酵母的作用。 这些模型取得了稳健的分解结果,在准确和速度上都超过了以前的状态。 快速和准确分解的组合不仅有利于后世数据处理,而且从图像处理角度对数千个被困的细胞进行在线监测或封闭式最佳实验设计是可行的。