We propose a general learning based framework for solving nonsmooth and nonconvex image reconstruction problems. We model the regularization function as the composition of the $l_{2,1}$ norm and a smooth but nonconvex feature mapping parametrized as a deep convolutional neural network. We develop a provably convergent descent-type algorithm to solve the nonsmooth nonconvex minimization problem by leveraging the Nesterov's smoothing technique and the idea of residual learning, and learn the network parameters such that the outputs of the algorithm match the references in training data. Our method is versatile as one can employ various modern network structures into the regularization, and the resulting network inherits the guaranteed convergence of the algorithm. We also show that the proposed network is parameter-efficient and its performance compares favorably to the state-of-the-art methods in a variety of image reconstruction problems in practice.
翻译:我们提出一个基于学习的总体框架,以解决非光滑和非光滑图像重建问题。我们将正规化功能作为“$l>2,1}”规范的构成以及一个光滑但非光滑的特征绘图功能模型,作为深刻的进化神经网络。我们开发了一种可察觉的趋同的世系型算法,通过利用Nesterov的平滑技术和残余学习理念来解决非光滑的非光滑的最小化问题,并学习网络参数,例如算法的输出与培训数据的参考值相匹配。我们的方法是多功能的,可以将各种现代网络结构用于正规化,由此产生的网络继承了有保证的算法趋同。我们还表明,拟议的网络具有参数效率,其性能优于各种图像重建问题的最新方法。