Matroid intersection is one of the most powerful frameworks of matroid theory that generalizes various problems in combinatorial optimization. Edmonds' fundamental theorem provides a min-max characterization for the unweighted setting, while Frank's weight-splitting theorem provides one for the weighted case. Several efficient algorithms were developed for these problems, all relying on the usage of one of the conventional oracles for both matroids. In the present paper, we consider the tractability of the matroid intersection problem under restricted oracles. In particular, we focus on the rank sum, common independence, and maximum rank oracles. We give a strongly polynomial-time algorithm for weighted matroid intersection under the rank sum oracle. In the common independence oracle model, we prove that the unweighted matroid intersection problem is tractable when one of the matroids is a partition matroid, and that even the weighted case is solvable when one of the matroids is an elementary split matroid. Finally, we show that the common independence and maximum rank oracles together are strong enough to realize the steps of our algorithm under the rank sum oracle.
翻译:马甲状腺十字路口是概括组合优化中各种问题的最强大的超自然理论框架之一。 Edmonds的基本理论为未加权环境提供了一个微量轴特性, 而Frank的权重分割理论则为加权情况提供了一种。 为这些问题开发了几种高效的算法, 所有这些都依赖于对两种类固醇使用一种常规神器。 在本文中, 我们考虑在限制的神器下, 类固醇交叉问题具有可移植性。 特别是, 我们关注等级和普通独立, 以及最高等级。 我们为等级和神器下的加权人造体交叉点给出了强烈的多重时间算法。 在普通的独立或神器模型中, 我们证明当一个类固醇是配方的甲状腺时, 非加权的机体交叉点问题是可以移动的, 而当一个类固醇是基本分裂的甲状腺时, 即便是加权的病例也是可以溶解的。 最后, 我们表明, 共同的独立和最高等级或最高等级在等级之下,我们共同的等级或最高等级之下都足够强大。