The parameterization of open and closed anatomical surfaces is of fundamental importance in many biomedical applications. Spherical harmonics, a set of basis functions defined on the unit sphere, are widely used for anatomical shape description. However, establishing a one-to-one correspondence between the object surface and the entire unit sphere may induce a large geometric distortion in case the shape of the surface is too different from a perfect sphere. In this work, we propose adaptive area-preserving parameterization methods for simply-connected open and closed surfaces with the target of the parameterization being a spherical cap. Our methods optimize the shape of the parameter domain along with the mapping from the object surface to the parameter domain. The object surface will be globally mapped to an optimal spherical cap region of the unit sphere in an area-preserving manner while also exhibiting low conformal distortion. We further develop a set of spherical harmonics-like basis functions defined over the adaptive spherical cap domain, which we call the adaptive harmonics. Experimental results show that the proposed parameterization methods outperform the existing methods for both open and closed anatomical surfaces in terms of area and angle distortion. Surface description of the object surfaces can be effectively achieved using a novel combination of the adaptive parameterization and the adaptive harmonics. Our work provides a novel way of mapping anatomical surfaces with improved accuracy and greater flexibility. More broadly, the idea of using an adaptive parameter domain allows easy handling of a wide range of biomedical shapes.
翻译:开放和闭合解剖面的参数化在许多生物医学应用中具有根本重要性。 球形调音仪是单位球体上定义的一组基础函数,广泛用于解剖形状描述。 但是, 在对象表面和整个单元球体之间建立一个一对一的对称, 可能会在表面形状与完美球体差异太大的情况下, 导致巨大的几何扭曲。 在这项工作中, 我们提议了简单连接的开放和闭合表面的适应区域保护参数化方法, 其参数化目标为球形帽。 我们的方法是优化参数域域的形状, 连同从对象表面到参数域的绘图。 对象表面表面将进行全球映射, 以区域保全的方式为单位球体球体表面的最佳球形区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区。 实验结果显示, 拟议的参数化方法优比参数化方法比参数化方法优, 从对象域域域域域域区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区,,,,,,,,,,,,,,,,,,,,,,,,,,, 等新地区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区区