3D Skeleton-based human action recognition has attracted increasing attention in recent years. Most of the existing work focuses on supervised learning which requires a large number of labeled action sequences that are often expensive and time-consuming to annotate. In this paper, we address self-supervised 3D action representation learning for skeleton-based action recognition. We investigate self-supervised representation learning and design a novel skeleton cloud colorization technique that is capable of learning spatial and temporal skeleton representations from unlabeled skeleton sequence data. We represent a skeleton action sequence as a 3D skeleton cloud and colorize each point in the cloud according to its temporal and spatial orders in the original (unannotated) skeleton sequence. Leveraging the colorized skeleton point cloud, we design an auto-encoder framework that can learn spatial-temporal features from the artificial color labels of skeleton joints effectively. Specifically, we design a two-steam pretraining network that leverages fine-grained and coarse-grained colorization to learn multi-scale spatial-temporal features.In addition, we design a Masked Skeleton Cloud Repainting task that can pretrain the designed auto-encoder framework to learn informative representations. We evaluate our skeleton cloud colorization approach with linear classifiers trained under different configurations, including unsupervised, semi-supervised, fully-supervised, and transfer learning settings. Extensive experiments on NTU RGB+D, NTU RGB+D 120, PKU-MMD, NW-UCLA, and UWA3D datasets show that the proposed method outperforms existing unsupervised and semi-supervised 3D action recognition methods by large margins and achieves competitive performance in supervised 3D action recognition as well.
翻译:三维基于骨架的人体动作识别近年来受到越来越多的关注。现有的大多数工作都集中在需要大量标记的动作序列的监督学习上,这往往需要耗费昂贵的时间和费用来注释。本文针对基于骨架的动作识别进行自监督三维动作表示学习。我们研究自监督表示学习,并设计了一种新的骨架云彩色化技术,能够从未标注的骨架序列数据中学习空间和时间骨架表示。我们将骨架动作序列表示为三维骨架云,在原始(未注释)骨架序列中根据其时间和空间顺序给予每个云中的点着色。利用着色后的骨架点云,我们设计了一个自编码器框架,能够从骨架关节的人工颜色标签中有效地学习空间-时间特征。具体来说,我们设计了一个两流预训练网络,利用细粒度和粗粒度着色学习多尺度的空间-时间特征。此外,我们设计了一个蒙版骨架云重绘任务,可以预训练设计的自编码器框架来学习信息丰富的表示。我们使用不同的配置下的线性分类器对骨架云着色方法进行评估,包括无监督、半监督、全监督以及迁移学习设置。在 NTU RGB+D、NTU RGB+D 120、PKU-MMD、NW-UCLA 和 UWA3D 数据集上的广泛实验表明,该方法在无监督和半监督 3D 动作识别方面均优于现有方法,并且在监督 3D 动作识别方面取得了有竞争力的性能。