Audio event detection is a widely studied audio processing task, with applications ranging from self-driving cars to healthcare. In-the-wild datasets such as Audioset have propelled research in this field. However, many efforts typically involve manual annotation and verification, which is expensive to perform at scale. Movies depict various real-life and fictional scenarios which makes them a rich resource for mining a wide-range of audio events. In this work, we present a dataset of audio events called Subtitle-Aligned Movie Sounds (SAM-S). We use publicly-available closed-caption transcripts to automatically mine over 110K audio events from 430 movies. We identify three dimensions to categorize audio events: sound, source, quality, and present the steps involved to produce a final taxonomy of 245 sounds. We discuss the choices involved in generating the taxonomy, and also highlight the human-centered nature of sounds in our dataset. We establish a baseline performance for audio-only sound classification of 34.76% mean average precision and show that incorporating visual information can further improve the performance by about 5%. Data and code are made available for research at https://github.com/usc-sail/mica-subtitle-aligned-movie-sounds


翻译:音频事件探测是一项广泛研究的音频处理任务,其应用范围从自行驾驶汽车到医疗保健等。音频赛等动态数据集推动了这一领域的研究。然而,许多工作通常涉及人工批注和核实,这在规模上是昂贵的。电影描绘了各种真实和虚构的情景,使他们成为开采广泛音频事件的丰富资源。在这项工作中,我们展示了一个音频事件数据集,名为“子标题统一电影音频(SAM-S)”。我们使用公开可得的闭场录音誊本自动将430部电影中的110公里以上的音频事件埋设地雷。我们确定了将音频事件分类的三个层面:声音、来源、质量和介绍制作245个声音最后分类的步骤。我们讨论了生成分类学所涉及的选择,并突出了我们数据集中声音的以人为本的性质。我们为只收音频的音频平均音频分类设定了一个基线性性能,即平均精确度为34.76%。我们指出,纳入视觉信息可以进一步提高性能,大约5%。在 https://gial-gustomas-s-arviews-arview

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2023年4月7日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
26+阅读 · 2020年2月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员