The use of deep learning methods for automatic detection of students' classroom behavior is a promising approach to analyze their class performance and enhance teaching effectiveness. However, the lack of publicly available datasets on student behavior poses a challenge for researchers in this field. To address this issue, we propose a Student Classroom Behavior dataset (SCB-dataset) that reflects real-life scenarios. Our dataset includes 11,248 labels and 4,003 images, with a focus on hand-raising behavior. We evaluated the dataset using the YOLOv7 algorithm, achieving a mean average precision (map) of up to 85.3%. We believe that our dataset can serve as a robust foundation for future research in the field of student behavior detection and promote further advancements in this area.Our SCB-dataset can be downloaded from: https://github.com/Whiffe/SCB-dataset
翻译:采用深度学习算法自动检测学生课堂行为,并分析他们的学业表现和提高教学效果是一种十分有前途的方法。然而,缺乏公开可用的学生行为数据集是这个领域研究的一个难题。为了解决这个问题,本文提出了一份名为“学生课堂行为数据集”(SCB-dataset)的数据集,它反映了真实场景并关注举手的行为。我们的数据集包括11,248个标签和4,003张图像。我们使用YOLOv7算法对数据集进行了评估,达到了高达85.3%的平均精度(map)。我们相信,我们的数据集可以作为未来学生行为检测领域研究的坚实基础,并促进这方面的进一步发展。我们的SCB数据集可以从以下链接下载: https://github.com/Whiffe/SCB-dataset