Traditional control methods of robotic peg-in-hole assembly rely on complex contact state analysis. Reinforcement learning (RL) is gradually becoming a preferred method of controlling robotic peg-in-hole assembly tasks. However, the training process of RL is quite time-consuming because RL methods are always globally connected, which means all state components are assumed to be the input of policies for all action components, thus increasing action space and state space to be explored. In this paper, we first define continuous space serialized Shapley value (CS3) and construct a connection graph to clarify the correlativity of action components on state components. Then we propose a local connection reinforcement learning (LCRL) method based on the connection graph, which eliminates the influence of irrelevant state components on the selection of action components. The simulation and experiment results demonstrate that the control strategy obtained through LCRL method improves the stability and rapidity of the control process. LCRL method will enhance the data-efficiency and increase the final reward of the training process.
翻译:传统的机器人连接孔组装控制方法依赖于复杂的接触状态分析。强化学习(RL)正逐渐成为控制机器人连接孔组装任务的首选方法。然而,RL的培训过程非常耗时,因为RL的方法总是与全球相连,这意味着所有的国家组成部分都假定是所有行动组成部分政策的投入,从而增加行动空间和有待探索的状态空间。在本文件中,我们首先确定连续连续空间序列的沙普利值(CS3),并建立一个连接图,以澄清行动组成部分在国家组成部分上的关联性。然后,我们根据连接图提出一个本地连接强化学习(LCRL)方法,以消除无关的国家组成部分对选择行动组成部分的影响。模拟和实验结果表明,通过LCRL方法获得的控制战略将提高控制过程的稳定性和迅速性。LCRL方法将提高数据效率和增加培训过程的最终奖励。