Group fairness definitions such as Demographic Parity and Equal Opportunity make assumptions about the underlying decision-problem that restrict them to classification problems. Prior work has translated these definitions to other machine learning environments, such as unsupervised learning and reinforcement learning, by implementing their closest mathematical equivalent. As a result, there are numerous bespoke interpretations of these definitions. Instead, we provide a generalized set of group fairness definitions that unambiguously extend to all machine learning environments while still retaining their original fairness notions. We derive two fairness principles that enable such a generalized framework. First, our framework measures outcomes in terms of utilities, rather than predictions, and does so for both the decision-algorithm and the individual. Second, our framework considers counterfactual outcomes, rather than just observed outcomes, thus preventing loopholes where fairness criteria are satisfied through self-fulfilling prophecies. We provide concrete examples of how our counterfactual utility fairness framework resolves known fairness issues in classification, clustering, and reinforcement learning problems. We also show that many of the bespoke interpretations of Demographic Parity and Equal Opportunity fit nicely as special cases of our framework.


翻译:诸如人口均等和平等机会等群体公平定义对限制其分类问题的基本决策问题作出假设; 先前的工作通过实施最接近的数学等同方法,将这些定义转化为其他机器学习环境,例如无监督的学习和强化学习; 因此,对这些定义有许多自言自语的解释; 相反,我们提供了一套普遍的集体公平定义,明确扩展到所有机器学习环境,同时仍然保留其原有的公平概念; 我们从两个公平原则中得出了这样的普遍框架。 首先,我们的框架衡量结果是公用事业,而不是预测,而且对于决策-等级和个人来说都是如此。 其次,我们的框架考虑反事实的结果,而不是仅仅观察的结果,从而防止通过自我实现预言满足公平标准的漏洞。 我们提供了具体的例子,说明我们反事实的公平框架如何解决分类、组合和强化学习问题等已知的公平问题。 我们还表明,许多关于人口均等和平等机会的直言不讳的解释与我们框架的特殊情况相符。

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2021年7月31日
专知会员服务
19+阅读 · 2021年7月11日
【经典书】模式识别导论,561页pdf
专知会员服务
84+阅读 · 2021年6月30日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月7日
Arxiv
0+阅读 · 2021年10月7日
VIP会员
相关VIP内容
专知会员服务
82+阅读 · 2021年7月31日
专知会员服务
19+阅读 · 2021年7月11日
【经典书】模式识别导论,561页pdf
专知会员服务
84+阅读 · 2021年6月30日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员