Machine Learning or Artificial Intelligence algorithms have gained considerable scrutiny in recent times owing to their propensity towards imitating and amplifying existing prejudices in society. This has led to a niche but growing body of work that identifies and attempts to fix these biases. A first step towards making these algorithms more fair is designing metrics that measure unfairness. Most existing work in this field deals with either a binary view of fairness (protected vs. unprotected groups) or politically defined categories (race or gender). Such categorization misses the important nuance of intersectionality - biases can often be amplified in subgroups that combine membership from different categories, especially if such a subgroup is particularly underrepresented in historical platforms of opportunity. In this paper, we discuss why fairness metrics need to be looked at under the lens of intersectionality, identify existing work in intersectional fairness, suggest a simple worst case comparison method to expand the definitions of existing group fairness metrics to incorporate intersectionality, and finally conclude with the social, legal and political framework to handle intersectional fairness in the modern context.


翻译:近些年来,机器学习或人工智能算法由于倾向于模仿和扩大社会上现有的偏见而赢得了相当多的仔细审查。这导致了一整堆独特但不断增长的工作,找出并试图纠正这些偏见。使这些算法更加公平的第一步是设计衡量不公平的衡量标准。这一领域的现有工作大多涉及公平(受保护群体与无保护群体之比)或政治界定类别(种族或性别)的二进制观点。这种分类忽略了交叉性的重要特点。不同类别的成员组成的分组往往会扩大偏见,特别是如果这样一个分组在历史机会平台上代表人数特别不足。我们在本文件中讨论了为什么公平衡量标准需要从交叉性的角度来看待,找出交叉性的现有工作,提出一种简单、最糟糕的比较方法,以扩大现有群体公平衡量标准的定义,将交叉性纳入其中,最后是社会、法律和政治框架,以处理现代背景下的交叉性公平性。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年11月25日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年11月25日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员