Neural controlled differential equations (Neural CDEs) are a continuous-time extension of recurrent neural networks (RNNs), achieving state-of-the-art (SOTA) performance at modelling functions of irregular time series. In order to interpret discrete data in continuous time, current implementations rely on non-causal interpolations of the data. This is fine when the whole time series is observed in advance, but means that Neural CDEs are not suitable for use in \textit{online prediction tasks}, where predictions need to be made in real-time: a major use case for recurrent networks. Here, we show how this limitation may be rectified. First, we identify several theoretical conditions that interpolation schemes for Neural CDEs should satisfy, such as boundedness and uniqueness. Second, we use these to motivate the introduction of new schemes that address these conditions, offering in particular measurability (for online prediction), and smoothness (for speed). Third, we empirically benchmark our online Neural CDE model on three continuous monitoring tasks from the MIMIC-IV medical database: we demonstrate improved performance on all tasks against ODE benchmarks, and on two of the three tasks against SOTA non-ODE benchmarks.
翻译:神经控制差异方程式( Neural CDEs) 是经常性神经网络( RNNSs) 的连续时间延伸, 在非正常时间序列的模型功能中实现最先进的性能。 为了连续时间解释离散数据, 当前的执行依赖于数据的非因因果关系。 当整个时间序列都提前观察到时, 这很好, 但意味着神经CDEs 不适合用于\ textit{online预测任务}, 需要实时作出预测: 经常网络的主要使用案例。 在这里, 我们展示了这一限制如何得到纠正。 首先, 我们确定了一些理论条件, 用于神经光电离数据序列的互换计划应该满足这些条件, 比如约束性和独特性。 其次, 我们利用这些理论来激励引入新的计划, 解决这些条件, 特别是提供可计量性( 在线预测) 和 顺畅( 速度 ) 。 第三, 我们根据经验将我们在线的神经光学 CDE 模型用于MIIC-IV 医疗数据库的三项持续监测任务。 我们根据SOMODO 3 基准展示了所有业绩, 与SOOODODODODA 3 。