In this paper, we study the Radial Basis Function (RBF) approximation to differential operators on smooth tensor fields defined on closed Riemannian submanifolds of Euclidean space, identified by randomly sampled point cloud data. Theoretically, we establish the spectral convergence for the classical pointwise RBF discrete non-symmetric approximation of Laplacians. Numerically, we found that this formulation produces a very accurate estimation of leading spectra with large enough data. When the manifolds are unknown, the error bound of the pointwise operator estimation depends on the accuracy of the approximate local tangent spaces. To improve this approximation accuracy, we develop a second-order local SVD technique for estimating local tangent spaces on the manifold. For robust manifold learning, we introduce a symmetric RBF discrete approximation of the Laplacians induced by a weak formulation on appropriate Hilbert spaces. Unlike the non-symmetric approximation, this formulation guarantees non-negative real-valued spectra and the orthogonality of the eigenvectors. Theoretically, we establish the convergence of the eigenpairs of both the Laplace-Beltrami operator and Bochner Laplacian in the limit of large data with convergence rates. Numerically, we provide supporting examples for approximations of the Laplace-Beltrami operator and various vector Laplacians, including the Bochner, Hodge, and Lichnerowicz Laplacians.
翻译:在本文中,我们研究了由随机抽样云数据确定的Euclidean空间封闭的里曼尼亚磁带上平滑的抗拉场操作员的辐射基础函数(RBF)近似值。从理论上讲,我们为古典的中点RBF的离散非对称近光线建立了光谱聚合值。从数字上看,我们发现这种配方产生对主要光谱的非常准确的估计,并有足够的数据。当方位未知时,点向操作员估算的误差取决于当地近似相色空间的准确性。为了提高这一近似准确性,我们开发了二级的本地SVD技术,用于在多功能上估算本地的色点空间。为了强有力的多功能学习,我们引入了由适当的希尔伯特空间的微弱配方所引出的拉伯特离光线的配方的对称 RBFF离近值。 与非对称近光线不同,这种配方保证了非内层真实度光谱色色色色系和亚质基因学家的直观度。从理论上说,我们为Bgen底基的操作者大水平的操作者提供了数据趋近点的趋近点。