We address the problem of learning the legitimacy of other agents in a multiagent network when an unknown subset is comprised of malicious actors. We specifically derive results for the case of directed graphs and where stochastic side information, or observations of trust, is available. We refer to this as ``learning trust'' since agents must identify which neighbors in the network are reliable, and we derive a protocol to achieve this. We also provide analytical results showing that under this protocol i) agents can learn the legitimacy of all other agents almost surely, and that ii) the opinions of the agents converge in mean to the true legitimacy of all other agents in the network. Lastly, we provide numerical studies showing that our convergence results hold in practice for various network topologies and variations in the number of malicious agents in the network.
翻译:当一个未知的子集由恶意行为者组成时,我们处理在多试剂网络中学习其他代理人合法性的问题。我们具体为定向图表和可以获得随机侧信息或信任观察而得出结果。我们将此称为“学习信任”信息,因为代理必须确定网络中的哪个邻国是可靠的,我们为此制定协议。我们还提供分析结果,表明根据该议定书一)代理几乎可以肯定地了解所有其他代理人的合法性,以及(二)代理的意见与网络中所有其他代理人的真正合法性相融合。最后,我们提供数字研究,表明我们的趋同结果在网络中的各种结构以及网络中恶意代理人数量的变化方面,实际上可以证明我们的趋同结果。