Previous deep learning-based video stabilizers require a large scale of paired unstable and stable videos for training, which are difficult to collect. Traditional trajectory-based stabilizers, on the other hand, divide the task into several sub-tasks and tackle them subsequently, which are fragile in textureless and occluded regions regarding the usage of hand-crafted features. In this paper, we attempt to tackle the video stabilization problem in a deep unsupervised learning manner, which borrows the divide-and-conquer idea from traditional stabilizers while leveraging the representation power of DNNs to handle the challenges in real-world scenarios. Technically, DUT is composed of a trajectory estimation stage and a trajectory smoothing stage. In the trajectory estimation stage, we first estimate the motion of keypoints, initialize and refine the motion of grids via a novel multi-homography estimation strategy and a motion refinement network, respectively, and get the grid-based trajectories via temporal association. In the trajectory smoothing stage, we devise a novel network to predict dynamic smoothing kernels for trajectory smoothing, which can well adapt to trajectories with different dynamic patterns. We exploit the spatial and temporal coherence of keypoints and grid vertices to formulate the training objectives, resulting in an unsupervised training scheme. Experiment results on public benchmarks show that DUT outperforms state-of-the-art methods both qualitatively and quantitatively. The source code is available at https://github.com/Annbless/DUTCode.
翻译:传统的轨迹稳定器将任务分成几个子任务,然后处理这些任务,这些任务在手工艺特征的使用方面在无纹和隐蔽的区域是脆弱的。在本文中,我们试图以一种深层次、不受监督的学习方式解决视频稳定问题,这种方式从传统稳定器中借用分解和解析概念,同时利用 DNN 的代表力处理现实世界情景中的挑战。技术上,DUT 由轨迹估计阶段和轨迹平滑阶段组成。在轨迹评估阶段,我们首先估计关键点的动向,分别通过新的多图估测战略和运动改进网络来初始化和完善电网运动。在轨迹平滑阶段,利用DNNNNN的演示力来预测动态平滑的内核,在轨迹评估阶段,在轨迹评估阶段中,DUT可以很好地调整关键轨距/轨迹的轨迹,在轨迹上,在轨迹图上,在轨迹上,在轨迹上,我们设计了一个动态的轨迹上,在轨迹测中,在轨迹上,在轨迹上,在轨迹上,在轨迹上,在轨迹上,在轨迹上,在轨迹上,在轨迹中,在轨迹上,在轨迹中,对结果上,对结果上,对结果上,对结果上,对地,对地,对地,对地,对地,对地,对地基进行,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地,对地