Video frame interpolation~(VFI) algorithms have improved considerably in recent years due to unprecedented progress in both data-driven algorithms and their implementations. Recent research has introduced advanced motion estimation or novel warping methods as the means to address challenging VFI scenarios. However, none of the published VFI works considers the spatially non-uniform characteristics of the interpolation error (IE). This work introduces such a solution. By closely examining the correlation between optical flow and IE, the paper proposes novel error prediction metrics that partition the middle frame into distinct regions corresponding to different IE levels. Building upon this IE-driven segmentation, and through the use of novel error-controlled loss functions, it introduces an ensemble of spatially adaptive interpolation units that progressively processes and integrates the segmented regions. This spatial ensemble results in an effective and computationally attractive VFI solution. Extensive experimentation on popular video interpolation benchmarks indicates that the proposed solution outperforms the current state-of-the-art (SOTA) in applications of current interest.
翻译:近年来,由于在数据驱动算法及其实施方面取得前所未有的进展,视频框架间插~(VFI)算法近年来大有改进。最近的研究采用了先进的运动估计或新的扭曲方法,作为应对具有挑战性的VFI假想情况的手段。然而,出版的VFI作品中没有一个考虑到内插误差的空间非统一特征。这项工作引入了这样一个解决方案。通过仔细研究光学流与IE的关联,本文提出了新的错误预测指标,将中框架分为不同区域,与不同的IE水平相对应。在这种由IE驱动的分解的基础上,并通过使用新的错误控制损失功能,它引入了一套空间适应性内插器,逐步处理和整合各片段区域。这种空间共通性的结果是有效和计算上具有吸引力的VFIFI解决方案。对流行性视频间插图基准进行的广泛实验表明,拟议的解决方案在应用当前利益时,超出了目前的状态。