Model extraction attacks have renewed interest in the classic problem of learning neural networks from queries. In this work we give the first polynomial-time algorithm for learning arbitrary one hidden layer neural networks activations provided black-box access to the network. Formally, we show that if $F$ is an arbitrary one hidden layer neural network with ReLU activations, there is an algorithm with query complexity and running time that is polynomial in all parameters that outputs a network $F'$ achieving low square loss relative to $F$ with respect to the Gaussian measure. While a number of works in the security literature have proposed and empirically demonstrated the effectiveness of certain algorithms for this problem, ours is the first with fully polynomial-time guarantees of efficiency even for worst-case networks (in particular our algorithm succeeds in the overparameterized setting).


翻译:模型抽取攻击令人们重新关注从查询中学习神经网络的经典问题。 在这项工作中,我们给出了第一个用于学习任意的、隐蔽的层神经网络激活的多元时间算法,提供了黑盒进入网络的机会。 形式上,我们证明,如果F$是一个任意的、隐蔽的层神经网络,有RELU激活功能,那么,在所有参数中,有一个具有查询复杂性和运行时间的多元算法,使得一个网络在Gaussian测量方面实现了相对于$F$的低平方块损失。 虽然安全文献中的一些作品已经提出并用经验证明了某些算法对于这一问题的有效性,但我们是第一个甚至对最坏的网络(特别是我们的算法在过分的参数设置上取得了成功 ) 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年1月4日
Arxiv
0+阅读 · 2022年1月4日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员