Conversational search has seen increased recent attention in both the IR and NLP communities. It seeks to clarify and solve a user's search need through multi-turn natural language interactions. However, most existing systems are trained and demonstrated with recorded or artificial conversation logs. Eventually, conversational search systems should be trained, evaluated, and deployed in an open-ended setting with unseen conversation trajectories. A key challenge is that training and evaluating such systems both require a human-in-the-loop, which is expensive and does not scale. One strategy for this is to simulate users, thereby reducing the scaling costs. However, current user simulators are either limited to only respond to yes-no questions from the conversational search system, or unable to produce high quality responses in general. In this paper, we show that current state-of-the-art user simulation system could be significantly improved by replacing it with a smaller but advanced natural language generation model. But rather than merely reporting this new state-of-the-art, we present an in-depth investigation of the task of simulating user response for conversational search. Our goal is to supplement existing works with an insightful hand-analysis of what challenges are still unsolved by the advanced model, as well as to propose our solutions for them. The challenges we identified include (1) dataset noise, (2) a blind spot that is difficult for existing models to learn, and (3) a specific type of misevaluation in the standard empirical setup. Except for the dataset noise issue, we propose solutions to cover the training blind spot and to avoid the misevaluation. Our proposed solutions lead to further improvements. Our best system improves the previous state-of-the-art significantly.
翻译:暂无翻译