Autocovariances are a fundamental quantity of interest in Markov chain Monte Carlo (MCMC) simulations with autocorrelation function (ACF) plots being an integral visualization tool for performance assessment. Unfortunately, for slow-mixing Markov chains, the empirical autocovariance can highly underestimate the truth. For multiple-chain MCMC sampling, we propose a globally-centered estimator of the autocovariance function (G-ACvF) that exhibits significant theoretical and empirical improvements. We show that the bias of the G-ACvF estimator is smaller than the bias of the current state-of-the-art. The impact of this improved estimator is evident in three critical output analysis applications: (1) ACF plots, (2) estimates of the Monte Carlo asymptotic covariance matrix, and (3) estimates of the effective sample size. Under weak conditions, we establish strong consistency of our improved asymptotic covariance estimator, and obtain its large-sample bias and variance. The performance of the new estimators is demonstrated through various examples.
翻译:自动变量是Markov链(MMC ) 蒙特卡洛(Monte Carlo) 以自动关系函数(ACF) 的模拟法与自动关系函数(ACF) 的模拟法是进行业绩评估的一个整体直观工具。 不幸的是,对于慢混的Markov 链,经验性自动变量可以大大低估真相。对于多链 MMC 取样,我们提议一个以全球为中心的自动变量计算器(G-ACvF),该计算器在理论和经验方面有重大改进。我们表明,G-ACvF 估计器的偏差小于当前最新状态的偏差。这一改进的估计器的影响在三种关键产出分析应用中显而易见:(1) ACF 区块,(2) 蒙特卡洛无症状共变量矩阵估计,以及(3) 有效样本规模估计。在薄弱的条件下,我们建立我们改进后的无症状共变差估计器的高度一致性,并获得其大相偏差和差异。新的估计器的性表现通过各种实例得到证明。