Adaptation to external and internal changes is major for robotic systems in uncertain environments. Here we present a novel multisensory active inference torque controller for industrial arms that shows how prediction can be used to resolve adaptation. Our controller, inspired by the predictive brain hypothesis, improves the capabilities of current active inference approaches by incorporating learning and multimodal integration of low and high-dimensional sensor inputs (e.g., raw images) while simplifying the architecture. We performed a systematic evaluation of our model on a 7DoF Franka Emika Panda robot arm by comparing its behavior with previous active inference baselines and classic controllers, analyzing both qualitatively and quantitatively adaptation capabilities and control accuracy. Results showed improved control accuracy in goal-directed reaching with high noise rejection due to multimodal filtering, and adaptability to dynamical inertial changes, elasticity constraints and human disturbances without the need to relearn the model nor parameter retuning.
翻译:对于在不确定环境中的机器人系统来说,对外部和内部变化的适应是主要的。在这里,我们展示了一个新的工业臂多感应活性推导控制器,显示如何利用预测解决适应问题。我们的控制器在预测大脑假设的启发下,通过学习和多式整合低和高维传感器输入物(如原始图像),同时简化结构,提高了当前主动推导方法的能力。我们系统地评估了7DoF Franka Emika Panda机器人臂的模型,将其行为与以前的主动推论基线和经典控制器进行了比较,分析了质量和数量适应能力和控制准确性。结果显示,由于多式过滤,目标定向控制准确性提高,由于多式过滤而导致高噪声阻断,适应动态惯性变化、弹性限制和人类扰动,而无需再读模型或参数调整。