In micro- and nano-scale systems, particles can be moved by using an external force like gravity or a magnetic field. In the presence of adhesive particles that can attach to each other, the challenge is to decide whether a shape is constructible. Previous work provides a class of shapes for which constructibility can be decided efficiently, when particles move maximally into the same direction induced by a global signal. In this paper we consider the single step model, i.e., each particle moves one unit step into the given direction. We prove that deciding constructibility is NP-complete for three-dimensional shapes, and that a maximum constructible shape can be approximated. The same approximation algorithm applies for 2D. We further present linear-time algorithms to decide whether or not a tree-shape in 2D or 3D is constructible. Scaling a shape yields constructibility; in particular we show that the $2$-scaled copy of every non-degenerate polyomino is constructible. In the three-dimensional setting we show that the $3$-scaled copy of every non-degenerate polycube is constructible.
翻译:在微量和纳米尺度系统中,粒子可以使用外部力来移动,例如重力或磁场。在存在可相互连接的粘合颗粒的情况下,挑战在于决定形状是否可建构。先前的工作提供了一组形状,当粒子在最大程度上移动到由全球信号引致的同一方向时,可以高效地决定可建构性。在本文中,我们考虑了单步模型,即每个粒子向给定方向移动一个单位步骤。我们证明,确定可建构性对于三维形状来说是NP-完整的,并且可以近似一个最大可建构的形状。同样的近似算法适用于 2D。我们进一步提出了线性时间算法,以决定2D 或 3D 中是否可建构成树形。 缩放形状的可生成性; 特别是我们表明,每个非降解性多元质谱的2美元缩放复制件是可以建构的。 在三维设置中,我们显示每个非降解性多元立方体的3美元缩放复制件是可以建构的。