Motivated by environmental policy questions, we address the challenges of estimation, change point detection, and uncertainty quantification of a causal exposure-response function (CERF). Under a potential outcome framework, the CERF describes the relationship between a continuously varying exposure (or treatment) and its causal effect on an outcome. We propose a new Bayesian approach that relies on a Gaussian process (GP) model to estimate the CERF nonparametrically. To achieve the desired separation of design and analysis phases, we parametrize the covariance (kernel) function of the GP to mimic matching via a Generalized Propensity Score (GPS). The hyper-parameters as well as the form of the kernel function of the GP are chosen to optimize covariate balance. Our approach achieves automatic uncertainty evaluation of the CERF with high computational efficiency, and enables change point detection through inference on derivatives of the CERF. We provide theoretical results showing the correspondence between our Bayesian GP framework and traditional approaches in causal inference for estimating causal effects of a continuous exposure. We apply the methods to 520,711 ZIP-code-level observations to estimate the causal effect of long-term exposures to PM2.5, ozone, and NO2 on all-cause mortality among Medicare enrollees in the US. A computationally efficient implementation of the proposed GP models is provided in the GPCERF R package, which is available on CRAN.
翻译:我们以环境政策问题为动力,应对因果接触-反应功能的估计、改变点检测和不确定性量化等挑战。在潜在的成果框架下,中央应急循环基金描述了连续不同接触(或处理)及其对结果的因果影响之间的关系。我们提出新的巴伊西亚办法,该办法依靠高山进程模型,非对称地估计中央应急基金的设计和分析阶段;为了实现所期望的设计和分析阶段的分离,我们平衡了GP的共差(核心)功能,以模拟通过通用的质谱(GPS)进行类比。超常参数以及GP的内核功能形式被选择为最佳的共差平衡。我们的办法以高计算效率实现对中央应急循环基金的自动不确定性评估,并通过对中央应急循环基金衍生物的推断来进行改变点检测。我们提供了理论结果,表明我们提议的Bayesian GP框架和传统因果推断方法之间的对应关系,以模拟持续接触的因果影响。我们在R720、711和NO2.5组合组合中采用的方法以及GIP的内核反应形式来优化平衡平衡。我们的方法在R520、711和MIPC的机序计算中长期风险值计算中提供了所有风险值的数值值值。