Opinion summarization is the task of creating summaries capturing popular opinions from user reviews. In this paper, we introduce Geodesic Summarizer (GeoSumm), a novel system to perform unsupervised extractive opinion summarization. GeoSumm involves an encoder-decoder based representation learning model, that generates representations of text as a distribution over latent semantic units. GeoSumm generates these representations by performing dictionary learning over pre-trained text representations at multiple decoder layers. We then use these representations to quantify the relevance of review sentences using a novel approximate geodesic distance based scoring mechanism. We use the relevance scores to identify popular opinions in order to compose general and aspect-specific summaries. Our proposed model, GeoSumm, achieves state-of-the-art performance on three opinion summarization datasets. We perform additional experiments to analyze the functioning of our model and showcase the generalization ability of {\X} across different domains.
翻译:意见总和是创建从用户审查中获取民众意见的摘要的任务。 在本文中, 我们引入了大地测量测距( GeoSummerizer) (GeoSumm) (GeoSumm) (GeoDecoder Summarizer) (GeoDecoder Summarizer) (GeoSumm) (GeoSumm) (Geodesic Summarizer) (Geodesic Summarizer) (GeoSumm) (GeoSum) ), 这是用于进行不受监督的采掘观点总结的新系统 。 GeoSumm 涉及基于编码- decoder 的演示模型, 以潜在语义单位的分布方式生成文本。 Geousimm 生成了这些表达方式, 通过在多个解码层进行字典前培训的文本演示来进行字典学习。 然后我们使用这些表达方式来量化复判判决的相关性,, 使用一个新的近似大地测量测距的评分机制 。 我们用相关评分分分数来确定流行意见的评分,, 来得出一般和侧面的评分。 我们用相关评分数分( geoSummus- summummal- summation) 在不同域的评分) 。</s>