This paper presents a unified approach based on Wasserstein distance to derive concentration bounds for empirical estimates for two broad classes of risk measures defined in the paper. The classes of risk measures introduced include as special cases well known risk measures from the finance literature such as conditional value at risk (CVaR), optimized certainty equivalent risk, spectral risk measures, utility-based shortfall risk, cumulative prospect theory (CPT) value, rank dependent expected utility and distorted risk measures. Two estimation schemes are considered, one for each class of risk measures. One estimation scheme involves applying the risk measure to the empirical distribution function formed from a collection of i.i.d. samples of the random variable (r.v.), while the second scheme involves applying the same procedure to a truncated sample. The bounds provided apply to three popular classes of distributions, namely sub-Gaussian, sub-exponential and heavy-tailed distributions. The bounds are derived by first relating the estimation error to the Wasserstein distance between the true and empirical distributions, and then using recent concentration bounds for the latter. Previous concentration bounds are available only for specific risk measures such as CVaR and CPT-value. The bounds derived in this paper are shown to either match or improve upon previous bounds in cases where they are available. The usefulness of the bounds is illustrated through an algorithm and the corresponding regret bound for a stochastic bandit problem involving a general risk measure from each of the two classes introduced in the paper.


翻译:本文介绍了基于瓦森斯坦距离的统一方法,目的是为文件中定义的两大类风险措施得出经验性估算值的集中值。采用的风险措施类别包括金融文献中众所周知的特殊情形,如有条件风险价值(CVaR)、最佳确定性等值风险、光谱风险措施、基于公用事业的短缺风险、累积前景理论(CPT)值、依附性预期效用和扭曲风险措施等。考虑了两种估计办法,每类风险措施都采用一种。一种估计办法涉及将风险评估措施适用于从随机变量样本(r.v.)中产生的实证分配函数。而第二种办法则涉及对脱轨样本适用同一程序的风险措施。所提供的界限适用于三种受欢迎的分布类别,即亚加西语、亚溢价和重压缩的分布。从先将估计误差与真实和实证分布之间的瓦塞斯坦距离联系起来,然后对后者使用最近的浓度界限。以前的浓度约束范围范围(r.v.v.)仅对标前的浓度约束值适用具体的风险评估。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月27日
Arxiv
0+阅读 · 2022年6月27日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员