We propose a knowledge-enhanced approach, ERNIE-ViL, which incorporates structured knowledge obtained from scene graphs to learn joint representations of vision-language. ERNIE-ViL tries to build the detailed semantic connections (objects, attributes of objects and relationships between objects) across vision and language, which are essential to vision-language cross-modal tasks. Utilizing scene graphs of visual scenes, ERNIE-ViL constructs Scene Graph Prediction tasks, i.e., Object Prediction, Attribute Prediction and Relationship Prediction tasks in the pre-training phase. Specifically, these prediction tasks are implemented by predicting nodes of different types in the scene graph parsed from the sentence. Thus, ERNIE-ViL can learn the joint representations characterizing the alignments of the detailed semantics across vision and language. After pre-training on large scale image-text aligned datasets, we validate the effectiveness of ERNIE-ViL on 5 cross-modal downstream tasks. ERNIE-ViL achieves state-of-the-art performances on all these tasks and ranks the first place on the VCR leaderboard with an absolute improvement of 3.7%.
翻译:我们建议一种知识强化方法,即ERNIE-VIL,它包含从场景图中获得的结构化知识,以学习视觉语言的联合表述。ERNIE-VIL试图在视觉和语言之间建立详细的语义联系(对象、物体属性和物体之间的关系),这是视觉和语言跨模式任务必不可少的。利用视觉场景图,ERNIE-VIL构建视觉图像预测任务,即目标预测、属性预测和关系预测任务,在培训前阶段。具体来说,这些预测任务是通过预测场景图中不同类型的节点来执行的。因此,ERNIE-VIL可以学习关于视觉和语言之间详细语义一致性的联合表述。在对大规模图像-文字对齐数据集进行预先培训之后,我们验证ENIE-VIE-VIL在5个跨模式下游任务上的有效性。ERNIE-VIL在所有这些任务上实现了艺术状态,并在VCRA的首选位上将VCR的绝对位列列。