Today's robotic quadruped systems can robustly walk over a diverse range of rough but continuous terrains, where the terrain elevation varies gradually. Locomotion on discontinuous terrains, such as those with gaps or obstacles, presents a complementary set of challenges. In discontinuous settings, it becomes necessary to plan ahead using visual inputs and to execute agile behaviors beyond robust walking, such as jumps. Such dynamic motion results in significant motion of onboard sensors, which introduces a new set of challenges for real-time visual processing. The requirement for agility and terrain awareness in this setting reinforces the need for robust control. We present Depth-based Impulse Control (DIC), a method for synthesizing highly agile visually-guided locomotion behaviors. DIC affords the flexibility of model-free learning but regularizes behavior through explicit model-based optimization of ground reaction forces. We evaluate the proposed method both in simulation and in the real world.
翻译:今天的机器人四分法系统可以有力地在地形高度各异的复杂但连续的地形上行走,地形高度各异。在不连续的地形上,如有空白或障碍的地形上游荡,提出了一系列相辅相成的挑战。在不连续的环境下,有必要预先计划使用视觉投入,并超越强健的行走,如跳跃等灵活的行为。这种动态运动导致机载传感器的大规模移动,这为实时视觉处理带来了一系列新的挑战。在这一环境中对灵活性和地形认识的要求强化了对强力控制的需求。我们提出了基于深度的脉冲控制(DIC),这是合成高度敏捷的视觉导动动作的一种方法。DIC提供了无型学习的灵活性,但通过明确的模型优化地面反应力量来规范行为。我们在模拟和现实世界中都评估了拟议的方法。