Hoare logic provides a syntax-oriented method to reason about program correctness and has been proven effective in the verification of classical and probabilistic programs. Existing proposals for quantum Hoare logic either lack completeness or support only quantum variables, thus limiting their capability in practical use. In this paper, we propose a quantum Hoare logic for a simple while language which involves both classical and quantum variables. Its soundness and relative completeness are proven for both partial and total correctness of quantum programs written in the language. Remarkably, with novel definitions of classical-quantum states and corresponding assertions, the logic system is quite simple and similar to the traditional Hoare logic for classical programs. Furthermore, to simplify reasoning in real applications, auxiliary proof rules are provided which support standard logical operation in the classical part of assertions, and of super-operator application in the quantum part. Finally, a series of practical quantum algorithms, in particular the whole algorithm of Shor's factorisation, are formally verified to show the effectiveness of the logic.


翻译:Hoare逻辑提供了一种以语法为导向的方法来解释程序正确性,并被证明在验证古典和概率性程序方面是有效的。关于量子 Hoare逻辑的现有建议要么缺乏完整性,要么只支持量子变量,从而限制其实际使用能力。在本文中,我们提出量子 Hoare逻辑用于一种简单而同时涉及古典和量子变量的语言。它的健全性和相对完整性被证明是用语言编写的量子程序的部分和完全正确性。值得注意的是,由于对古典量子状态和相应说法的新定义,逻辑系统非常简单,与传统的Hoare逻辑相似。此外,为了简化实际应用的推理,提供了辅助证据规则,支持理论传统部分的标准逻辑操作,以及量子部分的超级操作应用。最后,一系列实用的量子算法,特别是Shor系数化的整个算法,得到了正式验证,以显示逻辑的有效性。

0
下载
关闭预览

相关内容

专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月18日
Arxiv
0+阅读 · 2021年6月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员