Some variants of the (block) Gauss-Seidel iteration for the solution of linear systems with $M$-matrices in (block) Hessenberg form are discussed. Comparison results for the asymptotic convergence rate of some regular splittings are derived: in particular, we prove that for a lower-Hessenberg M-matrix $\rho(P_{GS})\geq \rho(P_S)\geq \rho(P_{AGS})$, where $P_{GS}, P_S, P_{AGS}$ are the iteration matrices of the Gauss-Seidel, staircase, and anti-Gauss-Seidel method. This is a result that does not seem to follow from classical comparison results, as these splittings are not directly comparable. It is shown that the concept of stair partitioning provides a powerful tool for the design of new variants that are suited for parallel computation.
翻译:(区块) Gaus-Seidel 迭代用于解决在(区块) Hessenberg 格式中以美元表示的线性系统的溶液( 区块) 。 将得出一些常规分裂的无症状趋同率的比较结果 : 特别是, 我们证明对于低赫森堡 M-matrix $\rho( P ⁇ GS)\ geq\rho( P_ S)\geq\rho( P ⁇ AGS}) $( 区块), 其中, $( GS) 、 P_ S、 P ⁇ AGS} $ 是高斯- 赛德尔 、 楼梯 和 抗 Gaus- Seidel 方法的循环矩阵 。 经典比较结果似乎并非如此, 因为这些分裂不具有直接可比性 。 事实表明, 楼梯分区概念为设计适合平行计算的新变量提供了强有力的工具 。