We develop an approach for fully Bayesian learning and calibration of spatiotemporal dynamical mechanistic models based on noisy observations. Calibration is achieved by melding information from observed data with simulated computer experiments from the mechanistic system. The joint melding makes use of both Gaussian and non-Gaussian state-space methods as well as Gaussian process regression. Assuming the dynamical system is controlled by a finite collection of inputs, Gaussian process regression learns the effect of these parameters through a number of training runs, driving the stochastic innovations of the spatiotemporal state-space component. This enables efficient modeling of the dynamics over space and time. Through reduced-rank Gaussian processes and a conjugate model specification, our methodology is applicable to large-scale calibration and inverse problems. Our method is general, extensible, and capable of learning a wide range of dynamical systems with potential model misspecification. We demonstrate this flexibility through solving inverse problems arising in the analysis of ordinary and partial nonlinear differential equations and, in addition, to a black-box computer model generating spatiotemporal dynamics across a network.
翻译:我们开发了一种基于噪音观测的全巴耶斯学习和校准时空动态机械模型的方法。通过将观测数据中的信息与机械系统模拟计算机实验相混合,实现了校准。联合焊接使用了高山和非高撒国家空间方法以及高山进程回归。假设动态系统由有限的投入集成控制,高山进程回归通过若干培训运行学习这些参数的效果,从而驱动对流时状态空间组成部分的随机创新。这样可以有效地模拟空间和时间的动态。通过降低级别高山进程和同源模型规范,我们的方法适用于大规模校准和反向问题。我们的方法是普遍的、可扩展的,并且能够学习一系列具有潜在模型识别的动态系统。我们通过解决分析普通和非部分非线性差异方程式时出现的反向问题来展示这种灵活性。此外,通过降低级别高山进程进程和同源模型规范,我们的方法适用于大规模校准和反向问题。我们的方法是普遍的、可扩展的,并且能够学习一系列具有潜在模型识别的动态系统。我们通过解决在普通和非线际空间空间空间空间空间方程式中产生的问题来展示这种灵活性。此外,此外,还利用一个黑箱生成的网络生成式计算机模型。