Latency-critical services have been widely deployed in cloud environments. For cost-efficiency, multiple services are usually co-located on a server. Thus, run-time resource scheduling becomes the pivot for QoS control in these complicated co-location cases. However, the scheduling exploration space enlarges rapidly with the increasing server resources, making the schedulers hardly provide ideal solutions quickly. More importantly, we observe that there are "resource cliffs" in the scheduling exploration space. They affect the exploration efficiency and always lead to severe QoS fluctuations. Resource cliffs cannot be easily avoided in previous schedulers. To address these problems, we propose a novel ML-based intelligent scheduler - OSML. It learns the correlation between architectural hints (e.g., IPC, cache misses, memory footprint, etc.), scheduling solutions and the QoS demands based on a data set we collected from 11 widely deployed services running on off-the-shelf servers. OSML employs multiple ML models to work collaboratively to predict QoS variations, shepherd the scheduling, and recover from QoS violations in complicated co-location cases. OSML can intelligently avoid resource cliffs during scheduling and reach an optimal solution much faster than previous approaches for co-located LC services. Experimental results show that OSML supports higher loads and meets QoS targets with lower scheduling overheads and shorter convergence time than previous studies.


翻译:在云层环境中广泛部署了关键的延迟服务。 为了提高成本效率,多种服务通常在服务器上同时使用。 因此,运行时间资源列表在这些复杂的合用地点案件中成为QOS控制点。 然而,随着服务器资源的增加,勘探空间的时间安排迅速扩大,使调度员很难迅速提供理想的解决方案。 更重要的是,我们注意到,在时间安排的勘探空间中存在着“资源悬崖”,它们影响勘探效率,并总是导致QOS的大幅波动。在以前的调度员中,资源悬崖无法轻易避免。为了解决这些问题,我们提议了一个新的基于 ML的智能智能调度仪 — OSML。它学习了建筑提示(例如,IPC、缓存、记忆足迹等)、时间安排解决方案和基于我们从现有服务器上广泛部署的11种服务中收集的QOSS需求之间的相互关系。 OSML使用多种多ML模型来协同工作,以预测QOS的变异性,将时间悬浮悬浮悬浮悬浮悬浮在前。 为了解决这些问题,我们建议采用基于QOSS的违反情况恢复新的高超高时段时间列表, 从而在以往的实验室实验性列表中得出了一种最先进的结果。

0
下载
关闭预览

相关内容

开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关VIP内容
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员