Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single class of human action is assumed for each clip. However, we may face more complicated scenarios in the industrial applications. For example, in the real-world urban pipe system, anomaly defects are fine-grained, multi-labeled, domain-relevant. To recognize them correctly, we need to understand the detailed video content. For this reason, we propose to advance research areas of video understanding, with a shift from traditional action recognition to industrial anomaly analysis. In particular, we introduce two high-quality video benchmarks, namely QV-Pipe and CCTV-Pipe, for anomaly inspection in the real-world urban pipe systems. Based on these new datasets, we will host two competitions including (1) Video Defect Classification on QV-Pipe and (2) Temporal Defect Localization on CCTV-Pipe. In this report, we describe the details of these benchmarks, the problem definitions of competition tracks, the evaluation metric, and the result summary. We expect that, this competition would bring new opportunities and challenges for video understanding in smart city and beyond. The details of our VideoPipe challenge can be found in https://videopipe.github.io.


翻译:视频理解是计算机视野中的一个重要问题。 目前,这项研究中研究周密的任务是人类行动认知,其中剪辑的剪辑是从长视频手工剪辑而成,每个剪辑的片段都假定有一类人类行动。 然而,我们在工业应用中可能面临更复杂的情景。 例如,在现实世界的城市管道系统中,异常缺陷是细微的、多标签的、与域有关的。为了正确认识这些缺陷,我们需要正确理解详细的视频内容。 为此,我们提议推进视频认知的研究领域,从传统行动识别转向工业异常分析。特别是,我们引入两个高质量的视频基准,即QV-Pipe和闭路电视-Pipe,以便在现实世界的城市管道系统中进行异常检查。根据这些新的数据集,我们将主办两次竞赛,包括:(1) QV-Pipe的视频偏差分类和(2) 闭路电视-Pipe的Temporal Defation本地化。我们的报告将描述这些基准的细节、问题定义、竞争轨道、智能衡量标准、以及结果。我们所期望的视频理解将带来新的城市挑战。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月30日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员