We generalize gradient descent with momentum for optimization in differentiable games to have complex-valued momentum. We give theoretical motivation for our method by proving convergence on bilinear zero-sum games for simultaneous and alternating updates. Our method gives real-valued parameter updates, making it a drop-in replacement for standard optimizers. We empirically demonstrate that complex-valued momentum can improve convergence in realistic adversarial games - like generative adversarial networks - by showing we can find better solutions with an almost identical computational cost. We also show a practical generalization to a complex-valued Adam variant, which we use to train BigGAN to better inception scores on CIFAR-10.
翻译:我们推广梯度下降,在不同的游戏中形成优化势头,以产生复杂价值的势头。我们通过证明双线零和游戏的趋同,同时和交替更新,为我们的方法提供了理论动力。我们的方法提供了真实价值的参数更新,使它成为标准优化器的低位替代物。我们从经验上证明,复杂价值的势头可以通过显示我们可以用几乎相同的计算成本找到更好的解决方案,从而改善现实的对抗性游戏的趋同性----如基因对抗网络。我们还展示了对复杂价值的亚当变异的实用概括性,我们用它来训练BigGAN在CIFAR-10上更好的初始分数。