We evaluate homophily and heterophily among ideological and demographic groups in a typical opinion formation context: online discussions of current news. We analyze user interactions across five years in the r/news community on Reddit, one of the most visited websites in the United States. Then, we estimate demographic and ideological attributes of these users. Thanks to a comparison with a carefully-crafted network null model, we establish which pairs of attributes foster interactions and which ones inhibit them. Individuals prefer to engage with the opposite ideological side, which contradicts the echo chamber narrative. Instead, demographic groups are homophilic, as individuals tend to interact within their own group - even in an online setting where such attributes are not directly observable. In particular, we observe age and income segregation consistently across years: users tend to avoid interactions when belonging to different groups. These results persist after controlling for the degree of interest by each demographic group in different news topics. Our findings align with the theory that affective polarization - the difficulty in socializing across political boundaries-is more connected with an increasingly divided society, rather than ideological echo chambers on social media. We publicly release our anonymized data set and all the code to reproduce our results: https://github.com/corradomonti/demographic-homophily


翻译:我们在一个典型的舆论形成背景下对意识形态和人口群体进行同质和异质的评估:在线讨论当前新闻;分析美国访问量最大的网站Reddit的R/news社区五年来用户互动情况;然后,我们对这些用户的人口和意识形态特征进行估计;通过与精心设计的网络零模式进行比较,我们确定哪些属性配对能够促进互动,哪些禁止互动;个人倾向于与相反的意识形态方面接触,这与回声室的叙述相矛盾;相反,人口群体是同性,因为个人倾向于在自己的群体内互动,甚至在这种属性无法直接观察的在线环境中。特别是,我们连续多年观察年龄和收入隔离情况:用户在属于不同群体时往往避免互动;这些结果在控制了不同新闻主题中每个人口群体的兴趣程度之后继续存在;我们的调查结果与影响性两极化理论一致——跨政治边界的社会化难度更大,而不是社会媒体上的意识形态回声室。我们公开发布我们的匿名数据集和所有数据代码,以便复制我们的数据: httpcobrbrob/com。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月4日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员