Several issues in machine learning and inverse problems require to generate discrete data, as if sampled from a model probability distribution. A common way to do so relies on the construction of a uniform probability distribution over a set of $N$ points which minimizes the Wasserstein distance to the model distribution. This minimization problem, where the unknowns are the positions of the atoms, is non-convex. Yet, in most cases, a suitably adjusted version of Lloyd's algorithm -- in which Voronoi cells are replaced by Power cells -- leads to configurations with small Wasserstein error. This is surprising because, again, of the non-convex nature of the problem, as well as the existence of spurious critical points. We provide explicit upper bounds for the convergence speed of this Lloyd-type algorithm, starting from a cloud of points sufficiently far from each other. This already works after one step of the iteration procedure, and similar bounds can be deduced, for the corresponding gradient descent. These bounds naturally lead to a modified Poliak-Lojasiewicz inequality for the Wasserstein distance cost, with an error term depending on the distances between Dirac masses in the discrete distribution.
翻译:机器学习中的一些问题和反向问题要求生成离散的数据, 仿佛是从模型概率分布中抽样的样本。 这样做的一个共同方法依赖于在一组美元点上构建统一的概率分布, 将瓦西斯坦距离最小化到模型分布中。 这个最小化问题, 未知数是原子的位置, 是非混凝土。 然而, 在多数情况下, 一个经过适当调整的劳埃德算法版本 -- 沃罗诺伊细胞被电源细胞取代 -- 导致小瓦西斯坦错误的配置。 这令人惊讶, 原因同样在于问题的非康韦克斯性质以及存在虚假的临界点。 我们为这一劳埃德型算法的趋同速度提供了明确的上限, 从距离彼此足够远的点云开始。 这已经在一个步骤后起作用, 可以推断出类似的界限, 对应的梯度下降。 这些界限自然导致对瓦西里斯坦距离成本的波利克- 洛贾西维茨不平等进行修改。 这还是因为问题的非康韦克斯性质, 以及存在虚假的临界点的存在。 我们为这种劳埃德型算法的趋同距离分布之间的距离值提供了明显的错误, 。