Efficient methods for the representation and simulation of quantum states and quantum operations are crucial for the optimization of quantum circuits. Decision diagrams (DDs), a well-studied data structure originally used to represent Boolean functions, have proven capable of capturing relevant aspects of quantum systems, but their limits are not well understood. In this work, we investigate and bridge the gap between existing DD-based structures and the stabilizer formalism, an important tool for simulating quantum circuits in the tractable regime. We first show that although DDs were suggested to succinctly represent important quantum states, they actually require exponential space for certain stabilizer states. To remedy this, we introduce a more powerful decision diagram variant, called Local Invertible Map-DD (LIMDD). We prove that the set of quantum states represented by poly-sized LIMDDs strictly contains the union of stabilizer states and other decision diagram variants. Finally, there exist circuits which LIMDDs can efficiently simulate, but which cannot be efficiently simulated by two state-of-the-art simulation paradigms: the Clifford + T simulator and Matrix-Product States. By uniting two successful approaches, LIMDDs thus pave the way for fundamentally more powerful solutions for simulation and analysis of quantum computing.
翻译:量子状态和量子运行的高效表述和模拟方法对于量子电路的优化至关重要。决定图(DDs)是一个研究周密的数据结构,最初用来代表布林函数,但已证明能够捕捉量子系统的相关方面,但它们的局限性却不十分清楚。在这项工作中,我们调查并弥合了现有基于DD结构与稳定器形式学之间的差距,后者是模拟可移植系统中量子电路的重要工具。我们首先表明,虽然建议DDDs简明代表重要的量子电路,但实际上它们需要某些稳定器国家的指数空间。为了纠正这一点,我们引入了一个更强大的决定图变方,称为“本地不可逆的地图-DD(LIMD) ” 。我们证明,多尺寸的LIMDs所代表的量子状态严格包含稳定器状态和其他决策图变体的结合。最后,存在一些LIMDs能够有效模拟的电路路,但两个状态模拟模式是无法有效模拟的,但它们实际上需要某些稳定器国家的指数空间。为了纠正这一点,我们引入了更强大的决定图变方,我们引入了更强大的决定图变体图变体变体图变体,我们用两种方法,即克里夫+Tima-Timatoratorto and mact and mact-Propraldorto-Propraldaldaldaldaldaldors for for pregalpaldaldalpaldaldaldaldaldaldaldaldaldaldways for lapaldwaydwaydaldaldaldaldaldald pourdaldaldald 和 maldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald 。两种方法, 方法, 和 maldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald 和基计算方法, 。两种方法