For the differential privacy under the sub-Gamma noise, we derive the asymptotic properties of a class of network models with binary values with general link function. In this paper, we release the degree sequences of the binary networks under a general noisy mechanism with the discrete Laplace mechanism as a special case. We establish the asymptotic result including both consistency and asymptotically normality of the parameter estimator when the number of parameters goes to infinity in a class of network models. Simulations and a real data example are provided to illustrate asymptotic results.
翻译:对于亚伽马噪音下的差分隐私,我们得出了具有一般链接功能二进制值的网络模型类别的无症状特性。在本文中,我们将二进制网络的分级序列放入一般的噪音机制下,作为特例使用离散 Laplace 机制。当参数数量移到网络模型类别无穷无尽时,我们确定了参数估计符的无症状结果,包括一致性和无症状常性。提供了模拟和真实数据实例,以说明无损效果。