We numerically study solitary waves in the coupled nonlinear Schr\"odinger equations. We detect pitchfork bifurcations of the fundamental solitary wave and compute eigenvalues and eigenfunctions of the corresponding eigenvalue problems to determine the spectral stability of solitary waves born at the pitchfork bifurcations. Our numerical results demonstrate the theoretical ones which the authors obtained recently. We also compute generalized eigenfunctions associated with the zero eigenvalue for the bifurcated solitary wave exhibiting a saddle-node bifurcation, and show that it does not change its stability type at the saddle-node bifurcation point.
翻译:我们在非线性单体方程式中进行单体波数研究。 我们检测到基本单体波的草叉裂缝, 并计算出相应的单体值问题, 以确定在石叉两体构造中诞生的单体波的光谱稳定性。 我们的数字结果显示了作者最近获得的理论。 我们还计算出与双体单体单体波的零电子元值相关的通用乙质元件, 以显示马鞍节的两体分解, 并显示它不会改变在马鞍节两体点的稳定性类型 。