Neural networks have achieved remarkable successes in machine learning tasks. This has recently been extended to graph learning using neural networks. However, there is limited theoretical work in understanding how and when they perform well, especially relative to established statistical learning techniques such as spectral embedding. In this short paper, we present a simple generative model where unsupervised graph convolutional network fails, while the adjacency spectral embedding succeeds. Specifically, unsupervised graph convolutional network is unable to look beyond the first eigenvector in certain approximately regular graphs, thus missing inference signals in non-leading eigenvectors. The phenomenon is demonstrated by visual illustrations and comprehensive simulations.


翻译:神经网络在机器学习任务中取得了显著成功。 最近,这被扩大到利用神经网络绘制学习图。 但是,在理解它们如何和何时运行良好方面,理论工作有限,特别是相对于光谱嵌入等既定统计学习技术而言。 在这份简短的论文中,我们提出了一个简单的基因模型,在这种模型中,没有监督的图形革命网络失败,而相邻的光谱嵌入成功。具体地说,未经监督的图形革命网络在某些普通图表中无法超越第一位精子外观,因此在非领先的摄取者中缺少推断信号。这个现象通过视觉图解和全面模拟得到证明。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
27+阅读 · 2021年7月16日
【伯克利-Ke Li】学习优化,74页ppt,Learning to Optimize
专知会员服务
40+阅读 · 2020年7月23日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年10月6日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
3+阅读 · 2020年4月29日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
1+阅读 · 2021年10月6日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
3+阅读 · 2020年4月29日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员