Lung cancer is the leading cause of cancer-related death worldwide. Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) are the most common histologic subtypes of non-small-cell lung cancer (NSCLC). Histology is an essential tool for lung cancer diagnosis. Pathologists make classifications according to the dominant subtypes. Although morphology remains the standard for diagnosis, significant tool needs to be developed to elucidate the diagnosis. In our study, we utilize the pre-trained Vision Transformer (ViT) model to classify multiple label lung cancer on histologic slices (from dataset LC25000), in both Zero-Shot and Few-Shot settings. Then we compare the performance of Zero-Shot and Few-Shot ViT on accuracy, precision, recall, sensitivity and specificity. Our study show that the pre-trained ViT model has a good performance in Zero-Shot setting, a competitive accuracy ($99.87\%$) in Few-Shot setting ({epoch = 1}) and an optimal result ($100.00\%$ on both validation set and test set) in Few-Shot seeting ({epoch = 5}).
翻译:肺癌是全世界与癌症有关死亡的主要原因。肺癌肾癌和肺脏细胞癌是最常见的非小细胞肺癌(NSCLC)的慢性子类型。病理学是肺癌诊断的一个重要工具。病理学家根据主要子类型进行分类。虽然病理学仍然是诊断的标准,但需要开发重要的工具来解释诊断。在我们的研究中,我们使用预先培训的视觉变异器(VIT)模型(从LC2500中),将多种肺癌标注在直肠切片上(从数据套LC2500中),在零热和少热环境中都是最常见的。然后我们比较零热和少热VIT的性能在准确性、精确性、回想性、敏感性和特殊性方面的表现。我们的研究显示,预先培训的VIT模型在Zero-Shot设置方面表现良好,具有竞争性的准确性(99.87美元),在低热切切切切切切切切片(从数据套LC2500中),在零位和少热切切切中(SOs=1和最佳验证结果(10)和最佳结果(10)上的测试集和最佳结果(10)。