Retrieval Augmented Generation (RAG) works as a backbone for interacting with an enterprise's own data via Conversational Question Answering (ConvQA). In a RAG system, a retriever fetches passages from a collection in response to a question, which are then included in the prompt of a large language model (LLM) for generating a natural language (NL) answer. However, several RAG systems today suffer from two shortcomings: (i) retrieved passages usually contain their raw text and lack appropriate document context, negatively impacting both retrieval and answering quality; and (ii) attribution strategies that explain answer generation usually rely only on similarity between the answer and the retrieved passages, thereby only generating plausible but not causal explanations. In this work, we demonstrate RAGONITE, a RAG system that remedies the above concerns by: (i) contextualizing evidence with source metadata and surrounding text; and (ii) computing counterfactual attribution, a causal explanation approach where the contribution of an evidence to an answer is determined by the similarity of the original response to the answer obtained by removing that evidence. To evaluate our proposals, we release a new benchmark ConfQuestions, with 300 hand-created conversational questions, each in English and German, coupled with ground truth URLs, completed questions, and answers from 215 public Confluence pages, that are typical of enterprise wiki spaces with heterogeneous elements. Experiments with RAGONITE on ConfQuestions show the viability of our ideas: contextualization improves RAG performance, and counterfactual attribution is effective at explaining RAG answers.
翻译:暂无翻译