We propose a new model, the Neighbor Mixture Model (NMM), for modeling node labels in a graph. This model aims to capture correlations between the labels of nodes in a local neighborhood. We carefully design the model so it could be an alternative to a Markov Random Field but with more affordable computations. In particular, drawing samples and evaluating marginal probabilities of single labels can be done in linear time. To scale computations to large graphs, we devise a variational approximation without introducing extra parameters. We further use graph neural networks (GNNs) to parameterize the NMM, which reduces the number of learnable parameters while allowing expressive representation learning. The proposed model can be either fit directly to large observed graphs or used to enable scalable inference that preserves correlations for other distributions such as deep generative graph models. Across a diverse set of node classification, image denoising, and link prediction tasks, we show our proposed NMM advances the state-of-the-art in modeling real-world labeled graphs.


翻译:我们提出了一个新的模型,即邻里混合模型(NMM),用于在图表中模拟节点标签。该模型旨在捕捉本地邻居节点标签的关联性。我们仔细设计了该模型,这样可以替代Markov随机字段,但可以进行更廉价的计算。特别是,可以线性时间绘制样本和评估单个标签的边际概率。为了按照大图表进行计算,我们设计了一个不引入额外参数的变量近似值。我们进一步使用图形神经网络(GNN)来参数化NMM,这样可以减少可学习参数的数量,同时允许进行表达式学习。拟议的模型可以直接适合大型观察图形,或者用于进行可缩放的推论,为深海基因图形模型等其他分布保持关联性。在一组不同的节点分类、图像解析和链接预测任务之间,我们提出的NMM在模拟真实世界标签图中推进了最新技术。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
38+阅读 · 2020年8月22日
因果图,Causal Graphs,52页ppt
专知会员服务
243+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
6+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员