We propose a new model, the Neighbor Mixture Model (NMM), for modeling node labels in a graph. This model aims to capture correlations between the labels of nodes in a local neighborhood. We carefully design the model so it could be an alternative to a Markov Random Field but with more affordable computations. In particular, drawing samples and evaluating marginal probabilities of single labels can be done in linear time. To scale computations to large graphs, we devise a variational approximation without introducing extra parameters. We further use graph neural networks (GNNs) to parameterize the NMM, which reduces the number of learnable parameters while allowing expressive representation learning. The proposed model can be either fit directly to large observed graphs or used to enable scalable inference that preserves correlations for other distributions such as deep generative graph models. Across a diverse set of node classification, image denoising, and link prediction tasks, we show our proposed NMM advances the state-of-the-art in modeling real-world labeled graphs.
翻译:我们提出了一个新的模型,即邻里混合模型(NMM),用于在图表中模拟节点标签。该模型旨在捕捉本地邻居节点标签的关联性。我们仔细设计了该模型,这样可以替代Markov随机字段,但可以进行更廉价的计算。特别是,可以线性时间绘制样本和评估单个标签的边际概率。为了按照大图表进行计算,我们设计了一个不引入额外参数的变量近似值。我们进一步使用图形神经网络(GNN)来参数化NMM,这样可以减少可学习参数的数量,同时允许进行表达式学习。拟议的模型可以直接适合大型观察图形,或者用于进行可缩放的推论,为深海基因图形模型等其他分布保持关联性。在一组不同的节点分类、图像解析和链接预测任务之间,我们提出的NMM在模拟真实世界标签图中推进了最新技术。