The magnetohydrodynamics (MHD) equations are generally known to be difficult to solve numerically, due to their highly nonlinear structure and the strong coupling between the electromagnetic and hydrodynamic variables, especially for high Reynolds and coupling numbers. In the first part of this work, we present a scalable augmented Lagrangian preconditioner for a finite element discretisation of the $\mathbf{B}$-$\mathbf{E}$ formulation of the incompressible viscoresistive MHD equations. For stationary problems, our solver achieves robust performance with respect to the Reynolds and coupling numbers in two dimensions and good results in three dimensions. Our approach relies on specialised parameter-robust multigrid methods for the hydrodynamic and electromagnetic blocks. The scheme ensures exactly divergence-free approximations of both the velocity and the magnetic field up to solver tolerances. In the second part, we focus on incompressible, resistive Hall MHD models and derive structure-preserving finite element methods for these equations. We present a variational formulation of Hall MHD that enforces the magnetic Gauss's law precisely (up to solver tolerances) and prove the well-posedness of a Picard linearisation. For the transient problem, we present time discretisations that preserve the energy and magnetic and hybrid helicity precisely in the ideal limit for two types of boundary conditions. In the third part, we investigate anisothermal MHD models. We start by performing a bifurcation analysis for a magnetic Rayleigh--B\'enard problem at a high coupling number $S=1{,}000$ by choosing the Rayleigh number in the range between 0 and $100{,}000$ as the bifurcation parameter. We study the effect of the coupling number on the bifurcation diagram and outline how we create initial guesses to obtain complex solution patterns and disconnected branches for high coupling numbers.
翻译:磁流动力学 (MHD) 方程式通常难以解答, 因为它们高度非线性结构, 以及电磁和流体动力变量之间的强烈结合, 特别是高Reynolds 和 混合数字。 在这项工作的第一部分, 我们提出了一个可放大的拉格朗吉预设器, 用于将 $\ mathbf{B}- $\ mathbf}- $\ mathf{ E} 等离异的有限元素分解。 在第二部分, 我们的解答器在 Reynold 和两个维利值数字上取得了强大的性能。 我们的解答器在两个维利基化参数上取得了强大的性能性能, 我们的解析器的精度分析, 在目前电磁场上, 电磁场的精度上完全无差异的近似值 。 在第三个部分, 我们的解、 耐力 Hall MHDM 模型和为这些方程式进行结构- 保存元素的方法。 我们的变式配制, 将精度的精度分析, 将精度的极性模型 演示的极性模型, 演示到电流的分辨率的解, 根基质的解的解, 在磁变动的解的解, 根基调, 根基的解, 根基的根基调的根基调, 根基的解, 根基的根, 根基的根, 根, 根, 根, 根基质, 根, 根, 根基, 根基, 根基, 根基的根基的根基的根基的根基的根, 根基的根基的根基的根基的根基的根基的根基的根基的根基的根基的根基, 根, 根基, 根, 根, 根基, 根, 根, 根, 根基的根基, 根基的根基的根基的根基的根基的根基的根基的根基的根, 根, 根, 根基, 根基的根基的根基的根基的根基, 根基的根基的根基的根基的根基的