We propose a component-based (CB) parametric model order reduction (pMOR) formulation for parameterized nonlinear elliptic partial differential equations (PDEs) based on overlapping subdomains. Our approach reads as a constrained optimization statement that penalizes the jump at the components' interfaces subject to the approximate satisfaction of the PDE in each local subdomain. Furthermore, the approach relies on the decomposition of the local states into a port component -- associated with the solution on interior boundaries -- and a bubble component that vanishes at ports: since the bubble components are uniquely determined by the solution value at the corresponding port, we can recast the constrained optimization statement into an unconstrained statement, which reads as a nonlinear least-squares problem and can be solved using the Gauss-Newton method. We present thorough numerical investigations for a two-dimensional neo-Hookean nonlinear mechanics problem to validate our method; we further discuss the well-posedness of the mathematical formulation and the \emph{a priori} error analysis for linear coercive problems.
翻译:我们建议根据相重叠的子域,为参数化非线性椭圆部分差异方程(PDEs)制定基于部件(CB)的参数性命令减量模型(PMOR)配方。我们的方法是作为一种限制的优化说明,对各部件界面的跳跃进行处罚,但前提是每个本地子域的PDE大致令人满意。此外,该方法依赖于将当地国家分解成一个港口部分 -- -- 与内部边界的解决方案相关联 -- -- 以及一个在港口消失的泡沫部分:由于泡沫部分由相应港口的解决方案值决定的独特性,我们可以将限制的优化说明重新写成一个不受限制的说明,该说明的表述是非线性最低方位问题,可以使用Gaus-Newton方法加以解决。我们为两维的New-Hooke非线性机械问题提出彻底的数字调查,以验证我们的方法;我们进一步讨论数学配方和线性胁迫性问题的前置误差分析。