Self-supervised monocular depth prediction provides a cost-effective solution to obtain the 3D location of each pixel. However, the existing approaches usually lead to unsatisfactory accuracy, which is critical for autonomous robots. In this paper, we propose FusionDepth, a novel two-stage network to advance the self-supervised monocular dense depth learning by leveraging low-cost sparse (e.g. 4-beam) LiDAR. Unlike the existing methods that use sparse LiDAR mainly in a manner of time-consuming iterative post-processing, our model fuses monocular image features and sparse LiDAR features to predict initial depth maps. Then, an efficient feed-forward refine network is further designed to correct the errors in these initial depth maps in pseudo-3D space with real-time performance. Extensive experiments show that our proposed model significantly outperforms all the state-of-the-art self-supervised methods, as well as the sparse-LiDAR-based methods on both self-supervised monocular depth prediction and completion tasks. With the accurate dense depth prediction, our model outperforms the state-of-the-art sparse-LiDAR-based method (Pseudo-LiDAR++) by more than 68% for the downstream task monocular 3D object detection on the KITTI Leaderboard. Code is available at https://github.com/AutoAILab/FusionDepth


翻译:自我监督的单心深度预测提供了一种低成本有效的解决方案,以获得每个像素的 3D 位置。 但是, 现有的方法通常会导致不满意的准确性, 这对于自主机器人至关重要 。 在本文中, 我们提出Fusion Depth, 是一个新型的两阶段网络, 利用低成本稀薄( 例如 4比am) 的LIDAR, 推进自监督的单心密度深度学习。 与目前主要以耗时的迭接后处理方式使用稀疏的LIDAR 的方法不同, 我们的模型将单眼图像特性和稀疏的LIDAR 特性结合到最初的深度地图上。 然后, 一个高效的供餐前改进网络被进一步设计, 以实时性能来纠正这些模拟-3D空间初步深度地图上的错误。 广泛的实验显示, 我们拟议的模型大大超越了所有最先进的自我监督方法, 以及基于稀薄的LiDAR 级深度预测和完成任务的方法。 随着精确的深度预测, 我们的模型比目前用于 AR- DO-L 级 的轨道 级 级 级 级 级 级 的 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级定式 级 级 级 级 级 级 级 级 A 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级 级

0
下载
关闭预览

相关内容

专知会员服务
6+阅读 · 2021年9月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Arxiv
7+阅读 · 2021年11月11日
Review: deep learning on 3D point clouds
Arxiv
5+阅读 · 2020年1月17日
LIMO: Lidar-Monocular Visual Odometry
Arxiv
3+阅读 · 2018年7月19日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】基于3D激光雷达地图的立体相机定位
泡泡机器人SLAM
4+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员