Tensor-based modulation (TBM) has been proposed in the context of unsourced random access for massive uplink communication. In this modulation, transmitters encode data as rank-1 tensors, with factors from a discrete vector constellation. This construction allows to split the multi-user receiver into a user separation step based on a low-rank tensor decomposition, and independent single-user demappers. In this paper, we analyze the limits of the tensor decomposition using Cram\'er-Rao bounds, providing bounds on the accuracy of the estimated factors. These bounds are shown by simulation to be tight at high SNR. We introduce an approximate perturbation model for the output of the tensor decomposition, which facilitates the computation of the log-likelihood ratios (LLR) of the transmitted bits, and provides an approximate achievable bound for the finite-length error probability. Combining TBM with classical forward error correction coding schemes such as polar codes, we use the approximate LLR to derive soft-decision decoder showing a gain over hard-decision decoders at low SNR.
翻译:在无源随机访问的背景下,提出了大规模上链通信的基于天线的调制(TBM) 。 在这种调制中, 发报机将数据编码为1- 10 级, 来自离散矢量星座的系数。 这个构造可以将多用户接收器分割成一个用户分离步骤, 其依据是低声调分解, 以及独立的单用户分解器。 在本文中, 我们使用 Cram\'er- Rao 边框分析强光分解的极限, 提供估计系数的准确度界限。 这些界限通过模拟显示在高静电中处于紧凑状态。 我们为发送的位数分解的输出引入了一种近似半振动模型, 便于计算日志相似率, 并为有限误差概率的概率提供了大致可实现的界限。 将 TBM 与极点等典型的远端错误校正编码组合在一起, 我们使用近 LLR 来生成软决定解码, 显示在低 NSR 的硬决定分解器上获得的收益。