Tensor-based modulation (TBM) has been proposed in the context of unsourced random access for massive uplink communication. In this modulation, transmitters encode data as rank-1 tensors, with factors from a discrete vector constellation. This construction allows to split the multi-user receiver into a user separation step based on a low-rank tensor decomposition, and independent single-user demappers. In this paper, we analyze the limits of the tensor decomposition using Cram\'er-Rao bounds, providing bounds on the accuracy of the estimated factors. These bounds are shown by simulation to be tight at high SNR. We introduce an approximate perturbation model for the output of the tensor decomposition, which facilitates the computation of the log-likelihood ratios (LLR) of the transmitted bits, and provides an approximate achievable bound for the finite-length error probability. Combining TBM with classical forward error correction coding schemes such as polar codes, we use the approximate LLR to derive soft-decision decoder showing a gain over hard-decision decoders at low SNR.


翻译:在无源随机访问的背景下,提出了大规模上链通信的基于天线的调制(TBM) 。 在这种调制中, 发报机将数据编码为1- 10 级, 来自离散矢量星座的系数。 这个构造可以将多用户接收器分割成一个用户分离步骤, 其依据是低声调分解, 以及独立的单用户分解器。 在本文中, 我们使用 Cram\'er- Rao 边框分析强光分解的极限, 提供估计系数的准确度界限。 这些界限通过模拟显示在高静电中处于紧凑状态。 我们为发送的位数分解的输出引入了一种近似半振动模型, 便于计算日志相似率, 并为有限误差概率的概率提供了大致可实现的界限。 将 TBM 与极点等典型的远端错误校正编码组合在一起, 我们使用近 LLR 来生成软决定解码, 显示在低 NSR 的硬决定分解器上获得的收益。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员