Current high-throughput technologies provide a large amount of variables to describe a phenomenon. Only a few variables are generally sufficient to answer the question. Identify them in a high-dimensional Gaussian linear regression model is the one of the most-used statistical methods. In this article, we describe step-by-step the variable selection procedures built upon regularization paths. Regularization paths are obtained by combining a regularization function and an algorithm. Then, they are combined either with a model selection procedure using penalty functions or with a sampling strategy to obtain the final selected variables. We perform a comparison study by considering three simulation settings with various dependency structures on variables. %from the most classical to a most realistic one. In all the settings, we evaluate (i) the ability to discriminate between the active variables and the non-active variables along the regularization path (pROC-AUC), (ii) the prediction performance of the selected variable subset (MSE) and (iii) the relevance of the selected variables (recall, specificity, FDR). From the results, we provide recommendations on strategies to be favored depending on the characteristics of the problem at hand. We obtain that the regularization function Elastic-net provides most of the time better results than the $\ell_1$ one and the lars algorithm has to be privileged as the GD one. ESCV provides the best prediction performances. Bolasso and the knockoffs method are judicious choices to limit the selection of non-active variables while ensuring selection of enough active variables. Conversely, the data-driven penalties considered in this review are not to be favored. As for Tigress and LinSelect, they are conservative methods.
翻译:暂无翻译