Large code models (LCMs) have remarkably advanced the field of code intelligence. Despite their impressive capabilities, they still face practical employment challenges, such as high costs, limited accessibility of proprietary LCMs, and adaptability issues of ultra-large LCMs. These challenges highlight the critical need for more accessible, lightweight yet effective LCMs. In this paper, we propose IterKD, an Iter Knowledge Distillation framework, which aims at continually transferring the programming capabilities of larger, advanced LCMs (Teacher) to smaller, less powerful LCMs (Student). IterKD consists of three stages in one cycle: (1) Correct-and-Fault Knowledge Delivery stage aims at improving the student models capability to recognize errors while ensuring its basic programming skill during the knowledge transferring, which involves correctness-aware supervised learning and fault-aware contrastive learning methods. (2) Multi-view Feedback stage aims at measuring the quality of results generated by the student model from two views, including model-based and static tool-based measurement; (3) Feedback-based Knowledge Update stage aims at updating the student model adaptively by generating new questions at different difficulty levels, in which the difficulty levels are categorized based on the feedback in the last stage. By performing the training cycle iteratively, the student model is continuously refined through learning more advanced programming skills from the teacher model. Finally, based on the proposed IterKD framework, we develop a lightweight yet effective LCM, named IterCoder, which is built upon CodeLlama-7B. Experimental results show that IterCoder achieves a Pass@1 score of 65.2 on the HumanEval benchmark, outperforming over-30B-sized LCMs by an average of 47.51% and surpassing comparable-sized LCMs by an average of 118.47%.


翻译:暂无翻译

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员